Name: _		
Date:	Pd:	

I. <u>Introduction Topics</u>			
Rates of Change Average Rate of Change Relationship between Average Rate of Change and Instantaneous Rate of Change	Definite Integral Geometric Meaning: Exact Method:		
Instantaneous Rate of Change i. Calculus concept ii. Geometric meaning iii. Graphically iv. Numerically	iiii		
II. Limits and Continuity			
Limits at a Point Formal Definition:	Continuity Informal Definition:		
Graphically:	Discontinuities:		
Numerically:	i		
Algebraically: i.	ii		
iiiii	iii		
Trig Limit Theorem:	Continuity Test		
Piecewise Functions:	i		
Limits at Infinity Graphically:	ii		
Algebraically:	iii		
Numerically:			
III. <u>Derivatives</u>			
Formal Definition:	How to write the equation of a tangent line:		
Alternative Definition:	Physics Applications: i		
Limit Problems:	ii iii		

1st Quarter Concept Sheet

Derivative Rules

c is a constant, a is a number, n is any number, and u is some function

$$\frac{d}{dx}[c] = \frac{d}{dx}[x^n] = \frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x) \pm g(x)]$$

$$\frac{d}{dx}[f(x) \pm g(x)] =$$

 $\frac{d}{dx}[x^n] =$

$$\frac{d}{dx}[c \cdot f(x)] =$$

Product Rule:
$$\frac{d}{dx}[f(x)g(x)] =$$

Quotient Rule:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$$

Chain Rule:
$$\frac{d}{dx}[f(g(x))] =$$

$$\frac{d}{dx}[u^n] = \underbrace{\frac{d}{dx}[\log_a u]} = \underbrace{\frac{d}{dx}[\log_a u]}$$

$$\frac{d}{dx}[a^u] =$$

$$\frac{d}{dx}[e^u] = \underline{\hspace{1cm}}$$

$$\frac{d}{dx}[\sin u] = \frac{d}{dx}[\sec u] = \frac{d}{dx}[\sec u]$$

$$\frac{d}{dx}[\cos u] =$$

$$\frac{d}{dx}[\tan u] =$$

$$\frac{d}{dx}[f^{-1}(u)] = \frac{d}{dx}[\tan^{-1}(u)] =$$

$$\frac{d}{dx}[\sin^{-1}(u)] =$$

$$\frac{d}{dx}[\sec^{-1}(u)] =$$

 $\frac{d}{dx}[\csc u] =$

 $\frac{d}{dx}[\cot u] =$

 $\frac{d}{dx}[\ln(u)] =$